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Abstract— This paper presents algorithms for state estima-
tion of adaptive optics (AO) systems with fast-rate actuators
and slow-rate image sensors. Typically, the information ob-
tained from these slow-rate image sensors is the time-averaged
output measurement during the exposure time. The additional
information available in the image measurement (in the form of
an intensity distribution) is discarded. In order to fully extract
information from these blurry measurements, the image sensor
is modeled as an integrative intensity sensor. The integrative
intensity sensor is a transform from temporal outputs to pixel-
domain measurements. Thus, the state estimation problem for
the AO system is recast into a multi-rate estimation problem
from a non-linear output measurement. Based on this formula-
tion, we propose and compare estimation algorithms that exploit
the unique properties of the non-linear integrative sensor model.
Experimental results on a fast-rate beam steering mirror and a
slow-rate image sensor verify that using the integrative sensor
model and exploiting its structure for state estimation can result
in lower prediction error.

I. INTRODUCTION

Image sensors are now prevalent as feedback measure-
ment mechanisms for a wide variety of applications. The
fundamental limitation of these image sensors is the frame
update rate, which is typically much lower than the ac-
tuator update rates. The image sensors deliver temporally
integrated measurements over the exposure period, which
are conventionally interpreted as the time-average of the
image feature of interest. A typical vision-feedback system
is therefore usually a multi-rate system, with a fast-acting
actuator and a slow image sensor. There is a rich body of
literature on identification, estimation, and control of such
multi-rate systems [1]. Lifting techniques, introduced in [2],
are powerful analysis and synthesis tools for multi-rate sys-
tem identification, estimation, and control [3]. Using multi-
rate techniques for identification, estimation, and control
of image-feedback systems can certainly enhance closed-
loop performance [1]. However, loop bandwidth will be still
constrained by the fact that the image sensor provides limited
information at a slow rate.

In image processing, motion blur [4] is observed when
an image sensor captures relative motion of an object dur-
ing the exposure time. Deblurring [5] of a motion-blurred
image is an ill-posed inverse problem [6]. As an example,
the image trace of an object moving left to right will be
indistinguishable from that of the object moving right to
left. Several algorithms have been proposed for extracting
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motion from blur [4], with various assumptions that elimi-
nate this ill-posedness (such as assuming a known motion
profile, constant velocity, constant acceleration, etc.). While
these algorithms are effective for image restoration, they are
inadequate for accurate dynamics reconstruction since they
focus primarily on determining the deblurred image, not
the motion field. Furthermore, they are not implementable
in real-time because of computational complexity. These
drawbacks, while not relevant for image reconstruction, are
of prime importance in estimating dynamics for real-time
feedback control.

To address this issue, in [7], the integrative image sensor
was modeled as a non-linear transform, i.e., the image sensor
transforms temporal information about the motion of the
object being imaged into a spatial intensity distribution. This
property of the image sensor can be used to extract output
time-history and hence reconstruct motion (output dynamics)
during the exposure time. Extraction of time-history at a fast-
rate from the slow-rate integrative sensor promises to break
the barrier of control bandwidths limited to frame update
rates of the image sensor in applications that rely on image
sensor feedback. In [7], an extended Kalman filter was used
for multi-rate estimation using the first and second moments
of the image. While this gives performance enhancement
over the simple first moment-estimation schemes used for
AO systems, there is still a substantial amount of information
unused and discarded from the intensity distribution.

It is clear that information in the intensity distribution
can be used to estimate the state more accurately through
a suitable inversion of the sensor transform. As mentioned
earlier, because of the ill-posed-ness of this inverse problem,
some form of regularization is necessary. In this paper, we
propose a regularization that uses the dynamic model of the
underlying system to remove the ill-posed-ness. Therefore,
we propose and experimentally validate a multi-rate algo-
rithm that uses a model of the underlying system to estimate
the state at the fast actuator rate, from noisy measurements
at much slower rates than the observed dynamics. The state
estimation is accomplished through the minimization of a
predicted image error.

Our motivating application is adaptive optics (AO), which
manipulates wavefront by dynamically changing the optical
path [8]–[11]. In a typical closed-loop AO configuration (for
a telescope), the actuator is a MEMS deformable mirror,
capable of operating in the KHz range, and the feedback
is provided by a wavefront sensor (e.g., Shack-Hartmann
sensor [12]) operating at a much lower rate (e.g., 10−50 Hz
sampling rate for a 30×30 lenslet arrays). The performance
limiting component of the wavefront sensor is the image
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sensor array.
In this paper, we will consider the general problem of state

estimation of a multi-rate system with a fast rate actuator
and a slow rate image sensor. We then pose the multi-
rate non-linear estimation problem by using an integrative-
sensor model of the camera. To illustrate the approach and
experimentally validate our results, we use a setup consisting
of a tip-tilt fast steering mirror and a CCD image sensor.

II. INTEGRATIVE IMAGE SENSOR

A. Image Sensor Triggering
The image acquisition process is characterized by the

following four timing parameters:
• Acquisition time, Ta. Instant at which the image sensor

is triggered for the first time.
• Exposure time, Te: the length of the actual image

acquisition window.
• Readout time, Tr: the time to transfer measured infor-

mation from the sensor to processor memory.
• Slow sample rate, Ts: the time between two successive

exposure windows. Clearly, Ts ≥ Tr +Te.
The first two parameters are user-specified. The readout

time is usually the bottleneck for the sensor operation.
B. Image Sensor Modeling

We let: η ∈ N :=
{
(ηx,ηy)|η ∈ [(0,0),(ηxmax ,ηymax)]

}
,

with η ∈ ℜ2, parametrize the spatial dimension (pixel do-
main) N . We define Y y(·) ∈ N to be the output of the
image sensor, a 2D intensity map (image), generated by the
observed dynamics y(t) which is the output of the system
within the exposure time of the image sensor, i.e. t ∈ T :=
[Ta,Ta +Te]. y(·) ∈ L2[T ].

Remark: y(·) here is intended as the system output as
it is seen by the image sensor, i.e. it is defined on the
pixel domain. There will be a function that assigns a spatial
domain location to the observed dynamics at every time
instant which depends on the positioning of the image sensor
relative to the observed system. In the following we neglect
this for ease of notation.

We assume Y y(·) is formed by integrating an image kernel
Ψ(·), corresponding to the image Y y≡0(·), over the exposure
period T with the acquisition command issued at Ta: Y y(·) =
CΨ(y)+n(·) where n(·) includes the random and shot noise
of the image sensor and CΨ : L2[Ta,Ta + Te]→ L2(N ) is
given by:

CΨ,Te,Ta(y) :=
∫ Ta+Te

Ta

Ψ(η− y(t))dt. (1)

To simplify notation, we will hereafter include only the all or
part of the subscripts of C and superscripts of Y if necessary.
Note that Ψ(η− y(t)) is simply the image kernel centred at
y(t). In the ideal case the image kernel can be assumed to
be a point centred at the origin, Ψ(·) = δ (·). Fig. 1 shows an
example of the relationship between the time-domain output
y(·) and the pixel domain image CΨ(·).

C. Point Source and Point Spread Function
In the case of point light source, as generated by a focused

laser beam or a guide star (as in AO applications), the image

Fig. 1. Top left: time domain signals. Top right: the corresponding 2D
pixel domain representation of the image sensor measurement. Bottom: 3D
visualization of the intensities.

kernel, Ψ, is simply the point spread function (PSF). In the
ideal case, the image of the point source is also a point and
Ψ is then a delta function. In the case of a laser light source,
the intensity profile is typically a 2D Gaussian. The optical
aberration of a point source may also be approximated by a
2D Gaussian profile. The PSF Ψ is then:

Ψ(η) = ae−
1
2 (η−η0)

T Σ−1(η−η0)

where η0 is the center of the Gaussian, a is the height of
the peak, and Σ is the 2×2 covariance matrix. The PSF may
be obtained experimentally by holding y(t) at zero. The PSF
is then approximately Y (η)/Te. The effect of noise may be
reduced by averaging Y over multiple exposures.

III. PROBLEM FORMULATION

Recalling that Tf is the sampling time of the fast system,
we define: Ne := Te/Tf to be the number of (fast) time
instants in an exposure window and N := Ts/Tf to be the
number of time instants in a slow step, i.e. the time between
successive outputs from the image sensor (Sec. II-A). Both
N,Ne are positive integers and clearly Ne < N. Based on the
image sensor model and on the fast-rate actuator model:

x f (k+1) = A f x f (k)+B f u f (k)+Bww f (k)

y f (k) =C f x f (k)+D f u f (k) (F.S.)

we pose the following state estimation problem for systems
with a fast-rate mirror and a slow integrative measurement.
The output y f is not directly measured; instead it is to be
inferred from the jth slow-rate integrative sensor output, Yj,
obtained at a rate Ts:

Yj(·) = C jTs(y j)(·)+n j(·), j = 0,1, . . .

where y j = y f ( jN+ l) l ∈ {1,2, . . .Ne}, i.e. the output of the
fast system within the jth exposure window, e.g. the signal
within the exposure window in the top left picture in fig. 1.
The general estimation problem posed in this paper is to
estimate x f (k) by using {Yj}J

j=0, for some J =
⌊ k

N

⌋
.

IV. STATE ESTIMATION

In this section we introduce the moments of an intensity
distribution CΨ generated by a non ideal image kernel
Ψ(·). We then proceed to define three observers which
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performances will be then compared in the experimental
results section V-A. The first observer (O1) will apply its
correction based on the center of gravity (first moment) of
the measured intensity distribution; the second one (O2) will
use the first and second moments while the last one (O3)
will use information from the whole intensity distribution
measurement.
Moments of the Intensity Distribution

Moment computations of intensity distributions have been
used frequently in image deblurring algorithms [4], [13]. The
pth moment of the univariate intensity distribution Y (·)∈N
is defined as:

y(p) =

∫
∞

−∞

η
pY (η)dη∫

∞

−∞

Y (η)dη

.

For Ψ(·) = δ (·), this higher order moment reduces to:

y(p)
δ

=
1
Te

∫ Ta+Te

τ=Ta

yp(τ)dτ. (2)

Therefore, for this special case, higher spatial moments of
the intensity distribution are time-averages of powers of the
output within the exposure window (yp

f ). The pth moment of
CΨ can be expressed as the power of a binomial where the
moments are intended in place of the powers, i.e.:

y(p)
C =

p

∑
i=0

(
p
i

)
y(p−i)

Ψ
y(i)

δ
(3)

where the y(p)
Ψ

moments are given by:

y(p)
Ψ

=

∫
ℜ2

η
p
Ψ(η)dη∫

ℜ2
Ψ(η)dη

and the y(p)
δ

moments are given by eq. (2). E.g. the first (or
center of gravity of the image yCG) and second moments can
be written (hereafter neglecting the subscript C ) as:

yCG := y(1) = y(1)
Ψ

+ y(1)
δ

= η0 +
1
Te

∫ Ta+Te

Ta

y f (τ)dτ

y(2) = y(2)
Ψ

+2y(1)
Ψ

y(1)
δ

+ y(2)
δ
.

Since the estimation and control algorithms are designed in
discrete time, we may approximate the moment equation,
eq. (3) as a finite sum with a sampling time Tf (we are
assuming here that acquisition time Ta is zero). Recalling
(sec. II-C) that η0 is the pixel where the Ψ(·) is centred
(e.g. where the peak of the Gaussian is located):

y(p)( j) =
p

∑
i=0

(
p
i

)ηxmax

∑
r=0

(r−η0)
p−i

Ψ(r)

ηxmax

∑
s=0

Ψ(s)

· 1
Ne

Ne−1

∑
m=0

(y f ( jN +m))i.

(4)

It is key to note that the spatial moments are projections
of the intensity profile onto the polynomial basis set B =
{bn : bn (η) = ηn,n ∈ Z+}. Alternative basis functions may

be designed to improve computational tractability based on
the image feature of interest (i.e. the image kernel) and/or
the nature of information to be extracted. In the following
section, we present state estimation schemes for systems with
integrative intensity sensor measurements, for the univariate
intensity distribution case. The case of a 2D intensity sensor
grid can be developed from a direct extension of these results.

(O1) Discrete-time Linear Estimation

We first present the standard multi-rate estimation scheme
that uses only the first moment (time averaged output over
the exposure time). This is the typical state of the art for AO
systems with a slow-rate measurement.

Since the first moment is the averaged value of the output
(y f ) of the fast-rate system during the exposure time, we
have the following lifted multi-rate system description when
we use the first moment (eq. (4), p = 1) as the only output
measurement (y(1)m (·)):

xs( j+1) =Asxs( j)+Bsus( j)+Bw,sws( j)

y(1)m ( j) =Csxs( j)+Dsus( j)+n1( j) (S.S.)
w∼N (0,W )

where the process noise is w and the measurement noise in
the moment is n1. We use the subscript s to stress that this
system is expressed in the slow time rate Ts, it is therefore
the slow system (S.S.) as opposed to the fast system (F.S.).
In [7], the dependence of the measurement noise on the
camera noise is explicitly derived.

In the above slow system:

As = AN
f

Bs =
[

AN−1
f B f AN−2

f B f . . . B f

]
Cs =

[
C f +C f A f + . . .+C f ANe−1

f

]
D̄s =

[
∑

Ne−1
i=0 C f Ai

f B f ∑
Ne−2
i=0 C f Ai

f B f . . . C f B f

]
Ds =

[
D̄s 0

]
,

where the 0 in Ds is a vector of appropriate dimensions to
match the length of us( j), which is the stacked vector of fast
inputs within the jth slow step, i.e.:

us( j) = [u f (( j−1)N +1) u f (( j−1)N +2) . . . u f ( jN)]T

(5)

Similarly Bw,sws(·) is just the stacked version of Bww f (·)
as in (5). It is easy to show that (As,Cs) is an observable
pair if

(
A f ,C f

)
is observable. Thus, a standard Luenberger

observer can be designed for the multi-rate system by placing
the poles of (As−LCs) as below:

x̂s( j+1) = Asx̂s( j)+Bsus( j)+L
(

y(1)m ( j)− ŷ(1)( j)
)

where by ŷ(p)( j) we represent the predicted moment accord-
ing to (4) (here with p = 1).
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(O2) Using Higher Moments for Estimation
Using the center of mass of the intensity distribution only

utilizes a fraction of the information available in the sensor
measurement. For example, by using the second moment
of the intensity distribution, we have an additional output
equation:

y(2)m ( j) =h(xs( j))+n2( j)

where h(xs( j)) is (4) with (p= 2). Thus, we now have a non-
linear output (y(2)m ) in addition to the linear output (y(1)m ). In
[7], an extended Kalman filter was designed based on the first
and second moments of the intensity measurement. Follow-
ing a similar procedure to obtain the time-varying observer
gains Lp( j), higher moments of the intensity distribution, y(p)

may be used as additional output for better state estimation.

x̂s( j+1) =Asx̂s( j)+Bsus( j)

+


L( j)
L2( j)
· · ·

Lp( j)


T


y(1)m ( j)− ŷ(1)( j)
y(2)m ( j)− ŷ(2)( j)

· · ·
y(p)

m ( j)− ŷ(p)( j)


(O3) Using Image Prediction Error for Estimation

In the most general case of an intensity distribution, it
is logical to use the entire intensity profile for obtaining
the best possible state estimate instead of spatial moments.
We now present an estimation algorithm that uses the error
between the measured and predicted intensity profiles, i.e.,
(Yj(·)−C (ŷ j)) to drive the estimation of the state. Note that
Yj(·) is the measured image at the jth slow step and C (ŷ j)
is the predicted image using the estimated state x̂s( j).

Thus, we have the following two-stage state estimation
scheme. First, the best guess of the state xs( j) is obtained
by solving the optimization problem below:

x̂opt( j) = arg min
x̂s( j)∈ℜn

∥∥Yj(·)−C (ŷ j)
∥∥2

subject to ŷ j(i) =C f Ai
f x̂s( j)+

i−1

∑
n=0

C f Ai−n−1
f B f us, j(n)

i = {0,1, · · · Ne−1}

Where us, j(i) is the ith component of the us( j) vector defined
in (5) and ‖ · ‖ is an appropriate norm. Then, this state
estimate is propagated forward (open loop) to the next slow
step as x̂s( j+1) = Asx̂opt( j)+Bsus( j).

V. EXPERIMENTAL APPARATUS

To validate the proposed algorithm we use the experimen-
tal setup shown in Fig. 2(a). A laser source is bounced off a
fast steering mirror (FSM) with the resulting image captured
by a CCD camera, as represented in Fig. 2(b). The mirror is
also equipped with a high bandwidth position sensing diode
(PSD) allowing the comparison between the image based
technique in this paper with a high quality reference of one of
the system states (the output ymeas = x f ,2). The components
of the system are described below.
• A two-degree-of-freedom (tip-tilt) FSM is used as the

plant, (F.S.) which states we intend to estimate. It is

(a)

(b)

Fig. 2. Experimental apparatus (a) showing a CCD camera, a laser source
(bottom left), a steerable mirror (right) and a beam splitter. The PSD sensor
is built in the CCD camera. (b) A schematic representation of the above.

driven by piezoelectric actuators and the position is
measured by PSD sensors. The mirror is connected to
an xPC Target real-time control computer with analog
PID closed loop control. The inputs to the system is
the commanded angular deflection in the x direction
and the output is the actual angular position. The PSD
measurements serve as high quality reference for the
image based estimation.

• Focused Laser Beam passes through a beam splitter,
reflects off the FSM surface which deflects it onto the
image sensor. Mirror motion causes the laser beam
to move on the image sensor plane. The laser has
been kept at constant (minimum) power throughout the
experiment.

• CCD Camera records the light intensity of the laser
beam deflecting off the mirror surface.

• Beam Splitter deflects the steady laser beam onto the
mirror.

Observer Design Scenarios
We compare three design scenarios: (O1) a Luenberger

observer designed based on the lifted system As,Bs and
pole placement, using only the first moment (y(1)) of the
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intensity distribution as developed in section (V-O1); (O2)
a Luenberger observer design based on the lifted system
As,Bs using both the first and second moment (y(1),y(2)) of
the intensity distribution as developed in section (V-O2) and
(V-O3) a state-predictor based on the minimization of the
infinity-norm of the image prediction error, as developed in
section (O3). Figure 3 shows a qualitative representation of
how the three estimators see the image sensor measurement,
i.e. what information of it they use to apply the estimate
correction.

Fig. 3. Qualitative representation of first (circle) and second (line) moments
on a measured image. (O1) uses only the first moment to correct its estimate,
(O2) uses first and second, (O3) the whole image.

The FSM system has the model G( jω) = G0( jω)(I +
Wt( jω)), where:

G0( jω)∼
[

A f B f
C f D f

]
with:

A f =

[
0 −1156
1 −13.6

]
,B f =

[
1156

0

]
C f =

[
0 1

]
, D f = 0

and the uncertainty Wt( jω) has magnitude between ±7dB.

A. Results
The time parameters were set to: Tf = 1ms, Te = 100ms,

Tr = 350ms and Ta = 90ms. The experiment was run for
j = 35 slow steps (total time of 15.84s). Note that the images
are available every N = 450 fast-rate steps, therefore the
state estimation update is done every 450ms and forward
propagated between slow-rate steps according to the the
model G0( jω) of the system driven by the input u f (·). In
all cases the estimators are initialized with identical random
initial states. Figure 4 shows an overview of the evolution of
the output (ŷ(·)(t) = x̂ f ,2) of the fast evolving system in the
three considered case (O1-3). Only the first few seconds of
experiment results are shown for ease of representation. The
estimates in the three cases introduced above are compared
to the true output of the FSM (yPSD) obtained by built in
PSD sensors. The image sensor activation pulse is shown as
well to highlight the exposure windows and readout times.
Figure 5 shows a detail of the output and estimates within
a slow-step, i.e. the time interval between successive output
measurements. The estimation correction occurs at the end
of every slow-step. Figure 6 shows the evolution of the norm
of the estimation error at the correction instants jNTf +Ta,
i.e. ε(·)( j) = ‖xs,2( j)− x̂s,2( j)‖. We show comparisons of

Fig. 4. Overview of the output y(·)(t) = x f ,2 of the system. The Luenberger
estimator (O1), the EKF estimator (O2) and the image prediction based one
(O3) are compared with the “true” output of the system (yPSD) as measured
by FSM built in PSD sensors.

Fig. 5. Detail of the estimation within a slow-step. The correction occurs
at the end of the readout time based on the information gathered during the
previous exposure window.

only the x f ,2 because we do not have direct measurements of
x f ,1 to use for validation. Finally fig. 7 shows the evolution
of the 2-norm of the estimation error ‖ŷ(·)− yPSD( j)‖2 for
the state variable x f ,2 = y f . The second order estimator (O2)
consistently performs better than the first order one (O1)
that uses only the center of gravity of the image, experimen-
tally validating the numerical results presented in [7]. It is
moreover evident from the above results that exploiting the
dynamic information encoded in the blur of the whole image
delivers more information rather than considering one or two
of its moments. The steady state estimation error mean of
(O1) (∼0.59) is bigger than the (O2) estimator (∼0.54) and
much bigger than the image-predictor based estimator (O3)
(∼0.34), although all cases deliver significant tracking errors.
These errors are due to the uncertain model of the system
adopted to design the estimators as well as to the process
and measurement noises.

VI. CONCLUSIONS AND FUTURE WORK
A model was developed for the class of integrative inten-

sity sensors. The integrative intensity sensor is effectively
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Fig. 6. Norm of the estimation error evaluated at the correction instants,
i.e. ‖y(·)( jN)− yPSD( jN)‖.

Fig. 7. Two norm of the estimation error evaluated within slow steps, i.e.
Ne

∑
l=1
‖y(·)( jN + l)− yPSD( jN + l)‖2.

a non-linear integral transform from time-domain evolution
of the output to a pixel-domain intensity distribution that
captures the relative length of time for which the output re-
sides at a given value. Thus, dynamic information (about the
output) encoded in the image blur can be extrapolated in the
form of moments of the intensity distribution or by directly
considering the whole intensity distribution measurement.
This information can be used to estimate the states of a fast
rate system through slow rate image sensor measurements.

A multi rate estimation algorithm was proposed that esti-
mates the fast evolving state by minimizing the infinity norm
of the estimation error in the form of difference of measured
and predicted intensity distributions. The measurements are
available at a slow rate, when the estimation correction is
applied. The states are then open loop propagated until the
new measurement is available according to a model of the
underlying fast system.

The state estimate obtained through this algorithm was
validated on a simplified active optics experimental setup and
the results compared to two different Luenberger observers,

one using only the first and the other both first and second
moments of the intensity distributions. It was shown that
the proposed image prediction algorithm outperforms the
moments-based estimators both in terms of estimation error
at the update instants and in terms of two norm of the
tracking error over successive updates.

Several future avenues of research exist for fully exploiting
the integrative nature of the image sensor. A theoretical
framework to describe the influence of the problem parame-
ters (e.g. the amplitude of the input, the magnitude and nature
of the noises, the amount of modeling uncertainty) on the
quality of the state estimate must be developed. Moreover
the existence of a null space in the inversion of the image
sensor transformation leads to the existence of alias solutions.
We intend to investigate these issues and propose methods
to effectively mitigate them.
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