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Abstract— Iterative learning control (ILC) is a technique for
determining feedforward signals for systems that execute a task
repeatedly. One approach towards designing ILC algorithms
is to pose it as an optimization problem. Traditionally, norm
optimal iterative learning control (NOILC) algorithms use `2-
norm-type cost functions. However, many applications require
optimizing non-smooth cost functions, e.g., in trajectory track-
ing where it is desirable to minimize the peak tracking error,
i.e., its `∞-norm. In this paper, we explore the performance
of a class of non-smooth cost functions along with constraints
which can be recast into the constrained optimal ILC (COILC)
framework. For linear systems with constraints (linear in the
feedforward input) and certain cost functions (such as `2, `∞
norms of tracking error and control effort), this optimization
problem can be formulated as a quadratic program (QP)
or a linear program (LP). These COILC problems can then
be solved with a modified interior-point-type method. In this
manuscript, we derive ILC algorithms for linear systems (and
linear constraints) with (1) a pure `∞ norm cost, (2) a mixed
`2 − `∞ norm cost. We compare the results to the traditional
`2 norm (NOILC) in simulation and experiment to illustrate
the effect of the choice of the cost function on the design of
the optimized feedforward control effort and hence the optimal
error profile.

I. INTRODUCTION

Iterative learning control is a methodology to determine
feedforward control inputs for processes executed over a
finite time interval repeatedly by incorporating error infor-
mation from prior iteration(s). ILC has been successfully
used in many applications such as industrial robots, wafer
stage motion systems, rapid thermal processing and assistive
rehabilitation.

Since ILC aims to refine the feedforward control input
from iteration to iteration with error measurements from
earlier iterations, the ILC problem can be recast as an opti-
mization problem being solved in an iterative manner. One of
the earliest optimization-based ILC algorithms was proposed
in [1]. Since then, several norm optimal ILC (NOILC)
schemes, which design ILC update laws by minimizing a
next-iteration cost function, have been explored [2], [3],
[4], and the robustness and monotonicity properties of this
family of algorithms have also been investigated [5]. Cross-
coupled ILC [6] uses a modified NOILC objective function
that minimizes contour tracking error. In more recent work,
Lim et al. [7] presented the generalized NOILC problem as a
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pareto optimization-based ILC to address multiple objectives,
e.g., error at certain points and energy cost.

Traditionally, ILC design did not account explicitly for
constraints in the system. The integration of constraints into
formulation of the typical NOILC, i.e., COILC, presents the
potential to remove the requirement that the optimum of
the unconstrained problem be in the constraint set. Mishra
et al. [8], [9] used a modified interior-point-type method
that combined experimental data and model information in
solving the optimization-based ILC problem for minimizing
tracking error with input saturation. Freeman et al. [10] used
a similar approach to address the mixed constraints in point-
to-point tracking problem, the requirement of point-to-point
tracking is embedded as an equality constraint. Volckaert et
al. [11] added a model correction step and then used a sparse
implementation of interior point method to solve the optimal
ILC problem for nonlinear system with constraints.

These algorithms have all been successfully demonstrated
for solving the constrained ILC problem with an `2-norm
type cost function. This norm is widely used as the cost
function because of its smoothness (i.e., the existence of
unique and bounded derivative). However, many applications
require choice of non-smooth cost functions. For example, in
trajectory tracking applications, we want to reduce the peak
tracking error, which is the `∞-norm of error. Therefore, a
generalized framework for addressing a larger set of cost
functions including non-smooth type cost functions can be
very beneficial for many applications.

In this paper, we construct a framework for COILC that
can be extended to the use of `∞ norm and mixed `2 − `∞
norm as cost functions to solve the constrained optimization
based ILC problem. In this framework, one can use different
norms or combining them together as cost function according
to different applications. Using lifted form representation, we
formulate the ILC problem as a quadratic program (QP) or
a linear program (LP). We then use the modified interior-
point-type method presented in [8] to solve the optimization
problems iteratively. The main contribution of this paper is
the formulation and verification of COILC problem with non-
smooth type cost functions (specifically `∞-norm cost and
mixed `2 − `∞-norm cost function) and the comparison of
their error performances, which are not addressed in [8], [10].

The paper is organized in following manner: Sec. II
describes the system and the general form of optimization
problems considered as QPs/LPs, then an interior-point-type
ILC update law is introduced to solve this class of problems.
Sec. III presents the formulation of COILC with non-smooth
cost functions as a constrained QP or LP. Finally, the results
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of implementing the constructed optimization problems in
simulation and experiment will be presented in Sect. IV.
Finally, conclusions and open issues that must be addressed
in the future are presented in Sec. V.

II. CONSTRAINED OPTIMAL ILC

In this section, we will formulate the COILC problem
for a linear (stable) system and present a modified interior-
point-type method as the learning law. While we introduce
the problem formulation with actuator saturation as the
constraint, it is straightforward to extend the idea to an
arbitrary linear constraint on the design variable (in this case,
the feedforward control effort). Moreover, while for clarity of
notation the following is presented for a single-input-single-
output (SISO) system, these algorithms are applicable for
multiple-input-multiple-output (MIMO) systems as well.

A. System Description

Consider the stable closed-loop system with input satura-
tion shown in Fig. 1. A repetitive process (i.e., a trajectory)
is executed by this system with a finite length of N time
samples starting at rest condition for each iteration. Let P (z)
represent the discrete time linear time-invariant (LTI) plant,
which is stabilized by an discrete time LTI feedback con-
troller C(z). Let k be the iteration number and j be the time
index, then yk, uf,k, uk and ek respectively denote the output
(position), the feedforward control effort, the total control
effort and the tracking error at the kth iteration. Moreover,
r and d indicate the output reference trajectory and repeti-
tive disturbance respectively, while satū(·) is the saturation
function, defined as satū := sign(uk) · min(|uk|, ū), where
ū is the maximum admissible value of total control effort.
The kth iteration system output and error, when neglecting
the input saturation are:

yk(j) = Gr(z
−1)r(j) +Gu(z−1)uf,k(j) +Gd(z

−1)d(j)
ek(j) = r(j)− yk(j),

(1)
where Gr, Gu, and Gd are transfer functions from r, uf ,
and d to y respectively and z−1 denotes the unit delay. The
repetitive nature of the process makes this system a two-
dimensional system; with evolution along an iteration (time)
and from iteration to iteration [12].

In order to construct the ILC design as an optimization
problem, in this manuscript we use the lifted system descrip-
tion of this system to transform it into a one-dimensional
system along iteration only. Lifting the system [13] yields:

yk = Grr + Guuf,k + Gdd
ek = r− yk,

(2)

where yk, uf,k, uk, ek are the (super)vectors that con-
tain all the corresponding signals in the kth iteration,
uf,k = [uf,k(0) uf,k(1) ... uf,k(N − 1)]

T , for example.
Gr,Gu,Gd ∈ RN×N are determined from the impulse
response of the corresponding transfer function and then
banded into N ×N matrices.

-
r g ?

uf,k

ukg -- C(z) -
ek

satū(·)- g?
d

- P (z) -
yk

6−

Fig. 1. Block diagram of the closed-loop system with actuator saturation
at the plant input. The feedforward input uf,k is to be designed through
ILC.

B. Constrained ILC Design as an Optimization Problem

Designing an ILC algorithm implies determining a learn-
ing function that incorporates information of the previous
iteration’s feedforward control effort and the corresponding
error into the generation of the feedforward control effort
for next iteration. Furthermore, this learning function should
generate control efforts converged to the optimal control
effort (for a prescribed cost function) as the iteration number
increases. We can express this as uf,k+1 = F (uf,k, ek),
where F : Uf × E → Uf , Uf is the space of feasible input
( uf,k) and E is the space of measured error (ek). F is the
learning function.

In this manuscript, we consider a constrained optimal ILC
(COILC) problem for systems with linear constraints for
non-smooth type cost functions. The specific form of the
constructed problem varies with the choice of the cost func-
tion, but the general form can be shown to be a constrained
Quadratic Program (QP) of the form:

min
uf∈RN

uTfTuf + qTuf + c

subject to Auf � b,
(3)

or a Linear Program (LP) of the form

min
uf∈RN

qTuf + c

subject to Auf � b,
(4)

where T ∈ RN×N is positive semidefinite, q ∈ RN ,
A ∈ Rp×N , b ∈ Rp, and c ∈ R. Auf � b captures the
constraints for uf .

Since there is no exact analytical solution for the con-
strained QP or LP, we cannot directly obtain the learning
function F from the optimization problem posed above
in (3), (4). However, such constrained optimization QP/LP
problems may be solved efficiently by computational algo-
rithms such as interior-point methods and active set methods.
These algorithms are essentially iterative search schemes,
which implies that we can adapt them to be iterative learning
algorithms by incorporating experimentally measured data
into each search step, as shown in [8]. We will next present
this modified interior-point method that can solve the COILC
iteratively with experimental data.

C. Interior-point-type ILC update law

A modified interior-point-type method [8] is used to
solve the constrained optimization problem (3) iteratively.
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Fig. 2. Optimization process of the modified interior-point method. The
Newton step in the dashed box can be seen as the learning step, which takes
in ek and uf,k and generates uf,k+1.

This method uses experimental data in every iteration (i.e.,
every gradient search step) of the optimization process. This
property makes it suitable as an ILC algorithm for a repetitive
process. We here briefly introduce this method using the QP
example (3), and refer the reader to [8] for details.

The typical barrier method algorithm replaces the cost
function (3) subject to constraints with:

min
uf

uTf Tuf + qTuf + c+ κφ(uf ), (5)

where κ ∈ R+, while φ is the logarithmic barrier function

φ(x) := −
m∑
i=1

log(bi − aTi uf ),

where bi and aTi are the ith row of b and A, respectively.
By using this logarithmic barrier function, the barrier method
transforms the inequality constrained problem to an uncon-
strained problem (5). Then, a sequence of problems as in
(5) with a decreasing κ is solved using Newton’s method,
with initial guess of each successive optimization problem
being the previous problems optimal solution. Fig. 2 shows
the optimization process.

The Newton’s method in the dashed block in Fig. 2 takes
ek and uf,k as inputs, and generates uf,k+1 as outputs,
which is similar to F (·, ·) for a typical ILC algorithm, i.e.:

uf,k+1 = uf,k + τ̃∆uf,k,

where it can be seen as the learning function F . The Newton
step ∆uf,k is determined by

∇2f(uf,k)∆uf,k = −∇f(uf,k),

where f(uf,k) = uTf,kTuf,k + qTuf,k + c+ κφ(uf,k), and:

∇f(uf,k) = 2Tuf,k + q + κAT θ (6)

∇2f(uf,k) = 2T + κATdiag(θ)2A, (7)

where θ ∈ RP are given by θi = 1/(bi − aTi uf,k),
while diag(θ) is a diagonal matrix with ith entry θi. The
measured error data ek will be used in the calculation of
∇f(uf,k), details will be introduced in Sec. III for different
cost functions.

The step size is then chosen as:

τ̃ = arg min
τ̄

f(uf,k + τ̄∆uf,k).

With this modified barrier method, we are now able to
solve the COILC problem iteratively. Next we will show the
detailed construction of a family of COILC problems with
non-smooth type cost functions.

III. COILC WITH NONSMOOTH COST FUNCTIONS

Traditionally, the `2-norm of the error (and control effort)
is chosen as the cost function to be minimized in NOILC
problems. However, in applications where we want to reduce
the peak (maximum) error, the `2-norm is not the best
choice of cost function since it only captures the averaged
square error characteristics of the trajectory. The peak error
is essentially the `∞-norm of error. Therefore we want to
explore the error performance when using `∞-norm type
cost function. In many applications, both the average and
peak errors have to be minimized. To address such problems,
algorithm for a mixed (`2−`∞)-norm cost is also introduced.

A. `∞-norm with saturation constraint

The `∞-norm of the tracking error is the maximum error
during the course of the entire trajectory. The `∞ error norm
optimization problem is described by

min
uf

‖e‖∞
subject to e = w −Guuf

Auf � b,

(8)

where w := (I−Gr)r−Gdd. Note that w can be obtained
from the first iteration of the experiment. Using a feasible
initial feedforward control effort uf,1, the error e1 can be
measured. Then we can get w by w = e1 + Guuf,1
[8]. Auf � b captures the input saturation constraint.
With the lifted representation we can have ū � |u| =
|(I + CP )−1Cr + (I + CP )−1uf − (I + CP )−1CPd|,
where ū = ū1N , 1N is the vector of 1s of length N .
So this constraint can be rewritten in the linear inequality

constraint form Auf � b, where A =
[
ÃT ,−ÃT

]T
,

b =
[
b1

T ,b2
T
]T

and Ã = (I + CP )−1, b1 = ū − wu

and b2 = ū + wu. wu is also determined from the first
iteration of the process, wu = u1 − (I + CP )−1uf,1.

Let ‖e‖∞ = τ , We can reformulate (8) into an LP [14].

min
ūf

[
0TN 1

]
ūf

subject to: Aeūf � be
Auf � b

, (9)

where

Ae =

[
−Gu − 1N
Gu − 1N

]
,be =

[
−w
w

]
, ūf =

[
uf
τ

]
.
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Rewriting the inequality (saturation) constraint using the
augmented vector ūf instead of uf and combining the two
constraints, we can formulate the ILC design with `∞-norm
objective function as a constrained LP.

LP1
min
ūf

[
0TN 1

]
ūf subject to

Āūf � b̄,
(10)

where Ā =

[
A 02N

Ae

]
, b̄ =

[
b
be

]
.

This is a specific case of the general form (4). Recalling
(6),

∇f(ūf,k) =
[
0TN 1

]T
+ κAT θ (11)

Although there seems no ek term in (6), θ is computed
from Ā, b̄, where b̄ contains be, which is constructed by
w. For example, for one of the constraints in Āūf � b̄,

i.e., [−Gu − 1N ]

[
uf
τ

]
� [−w] , θi’s expression can be

showed to include the tracking error ek(i), i.e.,

θi = 1/(−wi + Gu,iuf + τi) = 1/(τi − ek(i)). (12)

Thus we can combine measured error ek in the computation
of ∇f(ūf,k) in (6).

B. Mixed `2 − `∞-norm cost with saturation constraint

Since the `∞-norm of error only accounts for the peak
error in the optimization process, the average error may be
large. To reduce both the average and the peak error, both
the `∞ and `2 norms must be minimized simultaneously.

The most common method to accomplish this is by using
the weighted form of these two norms. Recall (8), 1

2e
Te =

1
2u

T
fG

T
uGuuf −wTGuuf +wTw. The optimization prob-

lem can be then written as

min
uf

1
2u

T
fG

T
uGuuf −wTGuuf + α

[
0TN 1

]
ūf

subject to Āūf � b̄.
(13)

Letting Ḡu = [Gu 0N ], we can rewrite (13) as a constrained
QP

QP2

min
ūf

1
2 ū

T
f Ḡ

T
u Ḡuūf −wT Ḡuūf

+α
[
0TN 1

]
ūf

subject to Āūf � b̄.

(14)

Comparing the part before plus sign in (14) with the general
form (3), T = 1

2Ḡ
T
u Ḡu, q = −ḠT

uw, c = 0, A = Ā,
b = b̄.

Recalling (6),

∇f(ūf,k) = ḠT
u Ḡuūf,k − ḠT

uw + κĀT θ

= ḠT
u (Ḡuūf,k −w) + κĀT θ

= −ḠT
uek + κĀT θ. (15)

So the first part’s contribution to descent direction can be
expressed by the measured error data ek [8], the second part’s
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Fig. 3. Plot of the reference position r(t) versus time t.

contribution to the descent direction also includes ek (12).
Hence, we obtain the ILC-like update law.

IV. RESULTS

We here show the results of implementation of the COILC
algorithms derived above on a precision motion control
system. The plant P, which is the model of the motor
stage, and the controller C are characterized by the transfer
functions:

P (s) =
3.194

s2 + 16.63s
, C(s) = 1000 · 31s2 + 1010s+ 1000

s2 + 1000s
,

the input is a current (Amp) while the system output is a
position (m). The plant and controller are sampled at time
step Ts = 0.001s. The input saturation is set at 1 Amp. The
reference trajectory to be followed is shown in Fig. 3.

A. COILC using `∞-norm and saturation

This section presents the simulation results from im-
plementing COILC using `∞-norm and saturation (as in
Sec. III-A). The first plot in Fig. 7 shows that the maximum
error (`∞-norm of error) when using `∞-norm as cost
function converges in 25 iterations. The solid line in Fig. 4
shows the converged error. The converged error when using
`2-norm as cost function is also showed as the dashed line for
comparison. We observe that `∞-norm does indeed decrease
the peak error, which is reduced from 6.433 · 10−5m to
4.883 ·10−5m, but the RMS error is larger than that of using
`2-norm as cost function. The RMS error when using `∞-
norm as cost function is 1.492 · 10−5, while, for `2-norm
case, the RMS error is 9.965 · 10−6m. Therefore, we want
to combine `∞-norm and `2-norm together to reduce both
RMS value and maximum value of error.

B. COILC using mixed `2 − `∞-norm and saturation

This section shows the simulation results from imple-
menting COILC using the weight mixed `2 − `∞-norm and
saturation (as in Sec. III-B). Fig. 6 shows the comparison
of results using different α (weighting coefficient on `∞-
norm) (14) in the mixed `2 − `∞-norm. We observe that
as α increases, the `∞-norm moves the peak downward to
decrease the peak error, while the RMS error will increase
as showed in Tab. I.

The second plot in Fig. 7 shows the convergence of
weighted cost when using mixed `2 − `∞-norm as cost
function (α is chosen as 0.04). We observe that the weighted
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when using `∞-norm cost and the weighted cost versus iteration when using
mixed `2 − `∞-norm cost.

Norm RMS error (m) Peak error (m)
`2-norm 9.965 · 10−6 6.433 · 10−5

`∞-norm 1.492 · 10−5 4.883 · 10−5

mixed norm (0.002) 1.041 · 10−5 5.438 · 10−5

mixed norm (0.006) 1.140 · 10−5 5.103 · 10−5

mixed norm (0.012) 1.251 · 10−5 4.894 · 10−5

mixed norm (0.04) 1.263 · 10−5 4.888 · 10−5

TABLE I
SUMMARY OF ERROR NORMS FOR DIFFERENT COST FUNCTIONS IN THE

CO-ILC PROBLEM FORMULATION.

error converges in 20 iterations. Fig. 5 shows the comparison
of the converged error when using mixed-norm as cost
function and `∞-norm as cost function. The mixed-norm
reduces both the RMS error and the peak error, We observe
that the peak error is as small as when only using `∞
norm as cost function, the peak error is 4.888 · 10−5m. The
average error is also reduced compared with the `∞-norm
case, the RMS error is 1.263 · 10−5m. Thus, mixed-norm
cost functions can generate good error performance in terms
of both RMS error and peak error.

For the calculation cost, taking the mixed `2−`∞-norm for
example, the calculation time of each iteration takes 0.564
to 4.451 seconds, and the average time is 2.184 seconds.

C. Experiment Results

The COILC using `∞-norm and saturation (as in Sec. III-
A) is also implemented on the motion control system ex-
perimentally and compared with the case using `2-norm and
saturation. Fig. 8 shows that `∞-norm does indeed decrease
the peak error, which is reduced from 2.478 · 10−4m to
1.943 ·10−4m. The RMS error is increased, comparing with
that of using `2-norm as cost function, from 6.078·10−5m to
6.930 · 10−5m. We can observe that the experiment verifies
our simulation result.

D. Robustness Evaluation

Since the performance of CO-ILC algorithms is reliant
on a good model, we now present an evaluation of their
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robustness to modeling uncertainty. Using the optimization
process of mixed `2−`∞-norm in III-B as example. We add
parametric model uncertainty to the plant P (s) = C(sI −
A)−1B+D by randomly changing each element of matrices
A,B,C,D within 60 percentage every simulation run and
run 50 times. Fig. 9 shows the evolution and convergence
of the cost function over 20 iterations for these model
mismatch cases. It is observed that with upto 60% parametric
model mismatch, the cost function converges. Since the
control input saturation’s influence on the error profile is
different with different models, the converged cost function
values are different (though similar). This demonstrates that
the proposed method has good robustness to parametric
uncertainty, specifically for the motion control system under
study. In order to present analytical guarantees of robustness,

rigorous robustness proofs for the COILC algorithms are
currently being investigated by the authors.

V. CONCLUSIONS

This paper introduces constrained optimal ILC with non-
smooth cost functions. Specifically, we derive algorithms for
(a) a pure `∞-norm cost, (b) a mixed `2 − `∞-norm cost;
and compare the results to the traditional `2-norm (NOILC).
It was found that using mixed weighted norm of `2 − `∞
resulted in better overall trajectory tracking; with multiple
objectives such as peak error and RMS error minimiza-
tion addressed simultaneously. With this COILC framework,
future work will include experimental validation for the
mixed `2− `∞-norm case and a rigorous robustness analysis
of the proposed algorithms. The use of other optimization
algorithms and computationally effective techniques instead
of the interior-point-method will also be investigated.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation Career Award grant CMMI-1254313 and in part
by the Center for Automation Technologies and Systems
(CATS) under a block grant from the New York State Empire
State Development Division of Science, Technology and
Innovation (NYSTAR).

REFERENCES

[1] M. Togai and O. Yamano, “Analysis and design of an optimal learning
control scheme for industrial robots: A discrete system approach,” in
Decision and Control, 1985 24th IEEE Conference on, vol. 24. IEEE,
1985, pp. 1399–1404.

[2] N. Amann and D. H. Owens, “Iterative learning control for discrete
time systems using optimal feedback and feedforward actions,” in
Proceedings of the 34th Conference on Decision and Control, New
Orleans, LA, July 1995.

[3] S. Gunnarsson and M. Norrlof, “On the design of ilc algorithms using
optimization,” Automatica, vol. 37, no. 1, pp. 2011–2016, 2001.

[4] D. H. Owens and J. Hatonen, “Iterative learning control – an opti-
mization paradigm,” Annual Reviews in Control, vol. 29(1), pp. 57–70,
2005.

[5] D. Owens, J. Hatonen, and S. Daley, “Robust monotone gradient-
based discrete-time iterative learning control,” International Journal
of Robust and Nonlinear Control, vol. 19, no. 6, pp. 634–661, 2009.

[6] K. L. Barton and A. G. Alleyne, “A cross-coupled iterative learning
control design for precision motion control,” Control Systems Tech-
nology, IEEE Transactions on, vol. 16, no. 6, pp. 1218–1231, 2008.

[7] I. Lim and K. L. Barton, “Pareto iterative learning control: Optimized
control for multiple performance objectives,” Control Engineering
Practice, vol. 26, pp. 125–135, 2014.

[8] S. Mishra, U. Topcu, and M. Tomizuka, “Optimization-based con-
strained iterative learning control,” Control Systems Technology, IEEE
Transactions on, vol. 19, no. 6, pp. 1613–1621, 2011.

[9] ——, “Iterative learning control with saturation constraints,” in Amer-
ican Control Conference, 2009. ACC’09. IEEE, 2009, pp. 943–948.

[10] C. T. Freeman and Y. Tan, “Iterative learning control with mixed
constraints for point-to-point tracking,” Control Systems Technology,
IEEE Transactions on, vol. 21, no. 3, pp. 604–616, 2013.

[11] M. Volckaert, M. Diehl, and J. Swevers, “Generalization of norm op-
timal ilc for nonlinear systems with constraints,” Mechanical Systems
and Signal Processing, vol. 39, no. 1, pp. 280–296, 2013.

[12] E. Rogers and D. H. Owens, Stability Analysis for Linear Repetitive
Processes. Berlin: Springer-Verlag, 1992.

[13] D. Bristow, M. Tharayil, and A. Alleyne, “A survey of iterative
learning control,” Control Systems Magazine, IEEE, vol. 26, no. 3,
pp. 96–114, June 2006.

[14] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
Univ. Press, 2004.

4891


